欢迎来到魔据教育大数据学院,专注大数据工程师培养!
当前位置:首页 > IT培训问题库 > 怎样进行大数据入门学习?

怎样进行大数据入门学习?

时间:2017-09-15 17:52:42作者:魔据大数据学院

怎样进行大数据入门学习?鉴于很多人问小编这个问题,就整理了一篇关于大数据入门学习,希望对各位想入坑的小伙伴有帮助。

说白了,数据科学就是解决三个问题:

1. data pre-processing;

2. data interpretation;

3.data modeling and analysis.

这也就是我们做数据工作的三个大步骤:

1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据;

 

怎样进行大数据入门学习?

 

2、我们想看看数据“长什么样”,有什么特点和规律;

3、按照自己的需要,比如要对数据贴标签分类,或者预测,或者想要从大量复杂的数据中提取有价值的且不易发现的信息,都要对数据建模,得到output。

这三个步骤未必严谨,每个大步骤下面可能依问题的不同也会有不同的小步骤,但按我这几年的经验来看,按照这个大思路走,数据一般不会做跑偏。

这样看来,数据科学其实就是门复合型的技术,既然是技术就从编程语言谈起吧,为了简练,只说说R和Python。但既然是荐数据科学方面的书,我这里就不提R/Python编程基础之类的书了,直接上跟数据科学相关的。

R programming

如果只是想初步了解一下R语言已经R在数据分析方面的应用,那不妨就看看这两本:其实对于一个没有任何编程基础的人来说,一开始就学这本书,学习曲线可能会比较陡峭。但如果配合上一些辅助材料,遇到复杂的问题可在上面搜索,总会找到解决方案的。这样一来,用这本书拿来入门学习也问题不大。而且这本书作者写得也比较轻松,紧贴实战。

Hadoop/Spark/Storm(可选): MapReduce是当前最著名也是运用最广泛的分布式计算框架,由Google建立。Hadoop是基于MapReduce的框架建立起来的分布式计算系统,Spark在Map Reduce的基础上利用有向无环图构建了RDD,目的就是为了减少Map和Reduce之间的数据交换次数,所以速度就快了。另一个区别就是,Hadoop用硬盘存储数据,Spark用内存存储数据,Storm只接受实时数据流而不存储数据。Hadoop因为“历史”最为悠久,有不少技术和产品都是基于Hadoop开发的,所以在较长的时间内Hadoop并不会不会被淘汰。而Spark是目前生态最好,最活跃的分布式框架。如果刚刚起步研究分布式计算,可从Spark入手。

想学大数据就到魔据教育,有专业讲师教你学大数据基础知识。


更多大数据相关资讯敬请关注魔据教育,为您分享最及时的大数据资讯。
学习大数据敬请关注魔据教育微信二维码。
魔据教育微信二维码

【版权与免责声明】如发现内容存在版权问题,烦请提供相关信息发邮件至kefu@mojuedu.com,我们将及时沟通与处理。本站内容除非来源注明魔据教育,否则均为网友转载,涉及言论、版权与本站无关。

全国咨询热线:400-690-5006,值班手机:18501996998(7*24小时)

在线咨询:李老师QQ(226594285),陈老师QQ(428683440)

企业合作服务专线:010-82340234-821, 院校合作洽谈专线:010-82340234

Copyright 2001-2017 魔据教育 - 北京华育兴业科技有限公司 版权所有,京ICP备17018991号-2

免费在线咨询立即咨询

免费索取技术资料立即索取

大数据技术交流QQ:226594285

电话咨询010-82340234